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ABSTRACT

Although current upper-air observing systems provide an impressive array of observations, many are deficient

in observing the temporal evolution of the boundary layer thermodynamic profile. Ground-based remote

sensing instruments such as the multichannel microwave radiometer (MWR) and Atmospheric Emitted Ra-

diance Interferometer (AERI) are able to provide profiles of temperature and water vapor through the

boundary layer at 5-min resolution or better. Previous work compared these instruments through optimal-

estimation retrievals on simulated clear-sky spectra to evaluate the retrieval accuracy and information content of

each instrument. In this study, this method is duplicated using real observations from collocated MWR and

AERI instruments from a field campaign in southwestern Germany. When compared with radiosondes, this

study confirms the previous results thatAERI retrievals aremore accurate thanMWRretrievals in clear-sky and

below-cloud-base profiling. These results demonstrate that the AERI has nearly 2 times as much information as

the MWR.

1. Introduction

Several reports published by the U.S. National Re-

search Council (NRC) have highlighted a goal for the

atmospheric community: the development of a national

network of ground-based boundary layer thermodynamic

profilers (NRC 2009, 2010). Such a network would

eliminate a significant gap in the abilities of the current

set of U.S. upper-air observing platforms (primarily sat-

ellites and radiosondes) in continuously observing the

boundary layer and would assist various atmospheric

scientists in the public, private, and academic sectors in

meeting their missions. Therefore, this network would

need to sense variables such as temperature, humidity,

and wind at high temporal, vertical, and spatial resolution.

Soon after the release of the NRC reports, efforts to

identify current technologies that would meet the NRC

requirements were begun. One workshop, funded by the

National Weather Service and the National Center for

Atmospheric Research, identified several ground-based

passive and active remote sensing technologies that could

constitute such a network (Hoff and Hardesty 2012). In

particular, two passive remote sensors—themultichannel

microwave radiometer (MWR) and the Atmospheric

Emitted Radiance Interferometer (AERI)—were sin-

gled out as commercially available instruments that met

many of the NRC requirements and could therefore act

as thermodynamic profiling nodes of the proposed
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network. Because such a network requires a significant

monetary investment, an understanding of the relative

performance between the two instruments was needed.

Both the AERI and MWR measure downwelling radi-

ance emitted by the atmosphere. These radiance obser-

vations, which encompass spectral regions where different

gases have a range of absorption features, contain in-

formation on the thermodynamic profile in the viewing

direction of the instrument. By using retrieval algorithms,

the thermodynamic profile can be derived from these

radiance observations. This is an ill-defined and ill-

constrained problem because many different thermo-

dynamic profiles are consistent with a single AERI or

MWR observation within the instrument noise level.

Many papers have been published that use various re-

trieval methods to derive thermodynamic profiles, rang-

ing from fast, statistically based retrievals (e.g., Liljegren

et al. 2005; Löhnert and Maier 2012) to more computa-

tionally intensive physically based retrievals (e.g.,

Hewison 2007; Feltz et al. 1998; Feltz et al. 2003). One

physically based retrieval method, named the optimal-

estimation technique (Rodgers 2000), stands out because

of its ability to provide retrieval-solution uncertainty es-

timates and information-content metrics in addition to

the retrieved profile.

Past papers have looked at the accuracy of optimal-

estimation retrievals applied to MWR and AERI ob-

servations (Hewison 2007; Löhnert et al. 2009; Cimini

et al. 2010; Turner and Löhnert 2014), but a side-by-side
accuracy and information-content comparison has not

been performed with real instruments using the same

retrieval framework and constraints. The comparison of

retrievals from real data is essential to understanding the

expected performance characteristics of the retrieved

profiles from the two instruments. This study follows a

method that is similar to the one outlined in Löhnert
et al. (2009, hereinafter L09) in that it applies the

optimal-estimation retrievalmethod to data collected by

collocated AERI and MWR instruments. With these

retrievals, we use collocated radiosondes to determine

the expected accuracy and information content of each

instrument.

2. Instrumentation

This study analyzes data fromacollocatedfirst-generation

Humidity and Temperature Profiler (HATPRO) MWR

and an AERI instrument to characterize the perfor-

mance of optimal-estimation thermodynamic retrieval

algorithms on passive ground-based remote sensors.

FromApril to December of 2007, these instruments were

deployed to the Murg valley in Heselbach, Germany, as

part of the Convective and Orographically-induced

Precipitation Study (COPS; Wulfmeyer et al. 2011). The

AERI instrument was part of the U.S. Department of

Energy’s Atmospheric Radiation Measurement (ARM;

Mather and Voyles 2013) Mobile Facility (AMF; Miller

and Slingo 2007) instrument suite. The University of

Cologne provided the HATPRO instrument for this

study. During this deployment, the AMF launched

Vaisala, Inc., radiosondes four times per day at ap-

proximately 0500, 1100, 1700, and 2300 UTC. These

radiosondes served as the truth profile for the AERI

and HATPRO retrievals.

a. The AERI

TheAERI is a ground-based passive spectrometer that

receives downwelling infrared radiation between the

wavelengths of 3.3 and 19.2mm (520–3000cm21) at a

spectral resolution of better than one wavenumber

(Knuteson et al. 2004a). The AERI records a down-

welling spectrum roughly every 30 s. It has a hatch that

closes in precipitation to protect the instrument’s fore-

optics, which makes retrieving profiles when liquid pre-

cipitation is falling impossible. For this experiment, the

random noise in the observed AERI spectra was greatly

reduced by a principal-component-based noise filter

(Turner et al. 2006). In addition to the noise filter, 5-min

averages of the spectra were taken before any retrieval

was performed.

The AERI uses two well-characterized blackbody tar-

gets to maintain its calibration. The emissivity of these

targets is greater than 0.999, with the temperature of one

blackbody fixed at 608C and the other floating at the

ambient temperature. These targets are viewed approxi-

mately every 5min. The regular viewing of these targets

results in a calibration uncertainty that is better than 1%

of the ambient radiance (Knuteson et al. 2004b). Each of

the spectral channels of the AERI is calibrated in-

dependently, and thus the random errors in each channel

are assumed to be independent of one another (Turner

and Löhnert 2014).
The first AERI retrieval algorithm developed, the

‘‘AERIprof’’ algorithm (Smith et al. 1999; Feltz et al.

1998, 2003), used two water vapor bands for moisture

profiling (538–588 and 1250–1350 cm21) and four

spectral regions in carbon dioxide (CO2) bands for

temperature profiling (612–618, 624–660, 674–714,

and 2223–2260 cm21). This study uses all of these

channels except the 2223–2260 cm21 band to retrieve

temperature and water vapor mixing ratio. Per the

instrument-simulation study in L09, this excluded band

has a limited impact on the retrieval accuracy, and

modeling the solar scattering that occurs within this

band accurately is computationally expensive (Turner

and Holz 2005).
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Weighting functions provide an indication of where in

the atmosphere the AERI instrument is sensitive to

changes in the thermodynamic profile. The weighting-

function value for a given wavelength and altitude is

defined as the emission at that height multiplied by the

transmission from that level to the instrument. Weight-

ing functions for the AERI’s temperature-sensitive

channels in the CO2 band (i.e., the 612–714 cm21 chan-

nels) are shown in Fig. 1a. Weighting functions from the

water vapor–sensitive channels are shown in Fig. 1b for

538–588 cm21 (red curves) and 1250–1350cm21 (gray

curves). These weighting functions generally show much

larger values near the surface that then decrease with

altitude, suggesting that most of the information in the

AERI radiance (for these spectral channels) originates in

the lowest 2km of the atmosphere.

b. The HATPRO

Like the AERI, ground-based MWRs receive down-

welling radiation emitted by the atmosphere, but they

do so in the microwave part of the electromagnetic

spectrum. The HATPRO microwave radiometer (Rose

et al. 2005) measures microwave radiation in 14 chan-

nels: 7 channels are distributed around the 22.2-GHz

water vapor absorption line from 22.2 to 31.4GHz (i.e.,

the K band) and the other 7 are on the long-wavelength

FIG. 1.Weighting functions computed using theU.S. StandardAtmosphere, 1976 for the channels used in theAERI

and HATPRO retrievals. Shown are the weighting functions for channels used in the AERI (a) temperature and

(b) water vapor mixing ratio retrievals. Here, 1 RU is equal to 1mW (m2 sr cm21)21. In (b), the weighting functions

for both the 538–588 cm21 (red curves) and 1250–1350 cm21 (gray curves) bands are given. Also shown are the

weighting functions used for the MWR (c) temperature (51–60GHz) and (d) water vapor mixing ratio (22.2–

31.4GHz) retrievals. The brown curves in (c) indicate how the 58-, 57-, and 56-GHz channel weighting functions are

modified by performing off-zenith scans at 158 above the horizon.
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side of the 60-GHz oxygen-absorption feature from

51.8 to 58.8GHz (i.e., the V band). TheK-band channels

can be used to obtain column-integrated water vapor

with limited information on the profile of humidity,

whereas the V-band channels are primarily sensitive to

the temperature-profile retrieval (Liljegren et al. 2001;

Hewison 2007; Löhnert and Maier 2012). In addition,

the K-band and lower-frequency V-band observations

are sensitive to liquid water path, which has increasing

absorption with frequency. Because of its filter bank and

direct-detection architecture, the HATPRO is able to

make observations in all channels simultaneously with a

temporal resolution of 1 s.

The information in MWR observations about the

temperature profile can be increased if elevation scans

are used in the retrieval (Crewell and Löhnert 2007).
Because including these observations assumes that the

atmosphere is horizontally homogeneous, only scans

from channels with high optical depth (e.g., the 56-, 57-,

and 58-GHz channels) are used in the retrievals, be-

cause more-transparent channels may sense atmospheric

structures (e.g., clouds) that are not directly overhead.

The HATPRO that was deployed took bilateral off-

zenith scans at 428, 308, 19.28, 10.28, and 5.48 from the

horizon, and the observations were averaged to reduce

the impact of any horizontal inhomogeneity of the at-

mosphere. These elevation scans were conducted roughly

every 20min, with 1-s zenith observations collected be-

tween scans. Because we desired the most accurate re-

trieval of thermodynamic profiles, we averaged the zenith

observations nearest to the elevation scans to create a

temporal sampling of roughly 20min.

Many of the 14 HATPRO channels generally have a

much lower opacity than theAERI channels. This becomes

clear by comparing the AERI water vapor weighting func-

tions (Fig. 1b) with the water vapor weighting functions

from the HATPRO (Fig. 1d): the latter are only weakly

dependent on height and consequently HATPRO obser-

vations contain less height information on water vapor than

do those of theAERI. For theVband, however,HATPRO

elevation-scan weighting functions (Fig. 1c; brown curves)

provide additional sensitivity to the temperature profile

within the boundary layer so that, together with the zenith

weighting functions, these become more comparable to

those of the AERI (Fig. 1a).

The HATPRO, like most ground-based MWRs, has

an internal blackbody kept at the ambient temperature

that is viewed regularly (typically every couple of min-

utes) to help to maintain its gain calibration, but the

system noise (absolute offset) needs to be determined

regularly, on the order of months. Two methods are

applied to achieve this calibration. The first is the so-

called tip-cal method, wherein observations aremade by

low-opacity channels that respond linearly as the air mass

increases (usually K-band channels) during an elevation

scan in cloud-free, homogeneous sky conditions. Han and

Westwater (2000) provide a detailed discussion of the

tip-cal method, which has many subtleties. The tip-cal

method cannot be applied to channels in which the

transmissivity of the atmosphere is too low (such as the

V-band channels at most surface locations), however.

Instead, alternating views of the ambient internal

blackbody and a second blackbody target filled with

liquid nitrogen (LN2) at;77K are used to calibrate the

instrument. This method must be done manually, and in

practice it can be difficult to get an accurate calibration

of better than 1-K total error (Maschwitz et al. 2013).

Throughout the course of the COPS experiment, the

HATPRO underwent several tip-cal and LN2 calibra-

tions. Despite this procedure, additional postprocessing

in the form of a bias-correction optimal-estimation re-

trieval was necessary to obtain better-quality thermo-

dynamic retrievals from the HATPRO.

3. Optimal-estimation retrievals

The optimal-estimation retrieval method used in this

study is an iterative Gauss–Newton retrieval technique

that uses a forward model F to relate the retrieved vari-

ables X to the observations Y (Rodgers 2000). The un-

certainties specified in the retrieval are assumed to be

Gaussian, which simplifies thematrix calculations. TheSe

matrix is the sum of the variances of the observation

uncertainty SY and the forward-model uncertaintyB and

describes the total uncertainty of the radiometric obser-

vations. Because the retrieval problem is ill defined, an a

priori dataset is used to constrain the solution, with Xa

representing the prior profile and Sa being its covariance

matrix. Because of the nonlinearity of the infrared and

microwave radiative transfer models, at each iteration n

the Jacobian of the forward model Kn is computed using

finite differences; the Jacobian contains the sensitivity of

the forward model to perturbations in the current esti-

mate of the state vector Xn and thus provides the in-

formation on how the retrieval solution should change to

get closer to the observation Y. The retrieval iterates,

each time solving for an improved estimate of the state

vectorXn11 until the retrieval converges upon a solution.

The optimal-estimation equation used is

Xn11 5X
a
1 (gS21

a 1KT
nS

21
e K

n
)21KT

nS
21
e

3 [Y2F(Xn)1K
n
(Xn 2X

a
)] , (1)

where superscripts 21 and T denote matrix inverse and

transpose, respectively. The g factor is used to better

constrain the retrieval in the early iterations (Masiello
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et al. 2012) and allows thermodynamic profiles to be

retrieved from the AERI even in cloudy conditions

when the first guess of the state vector is poor (Turner

and Löhnert 2014).
In this study, two optimal-estimation retrieval algo-

rithms (‘‘AERIoe’’ and ‘‘MWRoe’’) were used to obtain

vertical profiles of temperature T(z) and water vapor

mixing ratio Q(z). The retrieval algorithms used in this

study to retrieve thermodynamic profiles from the AERI

and HATPRO are virtually identical and follow the

framework of Turner and Löhnert (2014). Both retrievals
take in radiance measurements at specified frequencies,

the surface pressure, and an estimate of the lowest cloud-

base height from a collocated ceilometer. For information

on the optimal-estimation equations and convergence

criteria used by the retrievals in this study, see Turner and

Löhnert (2014).

a. AERIoe

AERIoe (Turner and Löhnert 2014) retrieves thermo-

dynamic profiles and cloud properties fromAERI spectra.

AERIoe was designed as an alternative to the previous

AERIprof algorithm, which has been used for studies on

convection initiation and severe-storm forecasting (Feltz

and Mecikalski 2002; Wagner et al. 2008). AERIoe

overcomes many of the limitations of AERIprof in that it

is able to retrieve in both clear and cloudy scenes and can

reach convergence from any first guess. AERIoe utilizes

the Line-by-Line Radiative Transfer Model, version 12.2

(LBLRTM; Clough et al. 1992; Turner et al. 2004; Clough

et al. 2005), as its forward model.

In addition to the thermodynamic profile, AERIoe

retrieves cloud properties such as liquid water path

(LWP) and effective radius. AERIoe accomplishes this

by not using observations from the 1250–1350 cm21 water

vapor band. Although this band is used in the AERIprof

and L09 retrievals, AERIoe must neglect this band be-

cause the LBLRTM does not treat scattering and there

is a large amount of scattering of infrared radiance by

clouds in this band relative to other bands used in the

retrieval (Turner and Löhnert 2014). Using only the 538–

588cm21 water vapor band (i.e., vs using this band and

the 1250–1350 cm21 band) reduces the information con-

tent contained within the AERI spectra.

b. MWRoe

MWRoewas developed to apply the optimal-estimation

framework to microwave radiometer observations. Its

framework is virtually identical to the AERIoe algorithm,

but MWRoe uses the Monochromatic Radiative Transfer

Model (MonoRTM), version 4.2 (Clough et al. 2005), as its

forwardmodel and it only retrieves LWP in addition to the

thermodynamic profiles. In addition, the observation

uncertainty of the HATPRO instrument specified in

the SY matrix was taken from the HATPRO noise

levels specified in L09, which are typical generation-1

HATPRO noise values. It is important to mention that

for this study the MWRoe and AERIoe retrievals used

exactly the same prior information (Xa and Sa).

4. Refining the HATPRO calibration

Thermodynamic profiles retrieved from the HATPRO

data were initially found to be severely biased (Fig. 2;

green curves), which stressed the need to characterize the

instrument better before running MWRoe. Following

the work done in Löhnert and Maier 2012, we began to

determine HATPRO instrument characteristics by

performing a clear-sky closure study on the microwave

radiometer data. This closure study used a set of clear-sky

HATPRO spectra paired with collocated radiosondes.

Any radiosonde moisture biases were corrected by scal-

ing its water vapor profile using the method in Turner

et al. (2003) to agree with the precipitable water vapor

values retrieved from a collocated AMF two-channel

(23.8 and 31.4GHz) microwave radiometer (Turner

2007).

To perform our closure study, we modified the

MWRoe MonoRTM [RT in Eq. (2)] by adding two

forward-model parameters. The first parameter, a fre-

quency offset Df added to frequency f, accounted for

spectral biases in each HATPRO channel. Second, ra-

diometric biases were characterized by adding a bright-

ness temperature offsetDTb to each calculated brightness

temperature. The newMWRoe forward model F(Xn) for

HATPRO brightness temperatures at iteration n and a

single frequency is now

F(X
n
)5DT

b
1RT[T(z),Q(z), LWP, f 1Df ] . (2)

The frequency offset allows the MWRoe retrieval to

characterize the instrument bandpass and any un-

certainties in the exact center frequency of theHATPRO

channel. The brightness temperature offset handles any

biases imparted by a poor HATPRO calibration. These

two offsets are specified in the forward model to separate

the contributions of bias into time-dependent (DTb) and

time-independent (Df) sources of error.
These offsets were solved simultaneously through

14 separate optimal-estimation retrievals: one retrieval

for each of the 14 HATPRO channels. Like MWRoe,

each retrieval used Eq. (2) for the forward model to

compute brightness temperatures, but, whereas MWRoe

solves for T(z), Q(z), and LWP, these additional re-

trievals solve for Df and DTb using a set of known clear-

sky T(z) and Q(z) profiles. Therefore, the clear-sky
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paired HATPRO–radiosonde observations were used,

and zenith brightness temperature observations from the

103 clear-skyHATPRO–radiosonde pairs found between

April and December 2007 made up the retrieval obser-

vation vector Y.

Each of the 14 retrievals retrieved one Df and a time

series of DTb(t) values, where t represents a correction

for a single clear-sky HATPRO–radiosonde pair. The Df
made up the first element of the state vector X, and

the remaining elements were DTb(t). The retrieval a pri-

oriXa for all of these values were set to zero. The a priori

1-sigmauncertainty valuesSawere estimated by using the

generation-1 HATPRO bandpass values for the V-band

channels shown in Fig. 1 of Löhnert and Maier (2012)

and by analyzing the initial brightness temperature

residuals between the biased MonoRTM calculation

and HATPRO observations. In the retrieval, frequency

offset values were only allowed for V-band channels

because a priori estimates of frequency offsets for these

channels were known; therefore, a priori 1-sigma un-

certainties for the K-band frequency offsets were set

close to 0. This setting stopped the retrieval from solving

for a frequency offset for the K-band channels.

All 14 retrievals converged, and the results indicated

three primary periods in which the retrieved brightness

temperature offsets were constant with time. Each period

was separated by an LN2 calibration that was performed

on the instrument (not shown). Only results from the last

period are considered in this study, because they are

relevant to the time period of data that we used to com-

pare the AERI and HATPRO. The results from this last

period (Table 1) suggested that the lowest four V-band

frequencies should use frequency offsets ranging from 44

to 162MHz to better characterize the radiometer. These

retrieved frequency offsets are similar to those reported

in the generation-1 bias correction performed in Löhnert
and Maier (2012), who note that some uncertainty exists

in the actual central frequency of the radiometer. Table 1

also shows that the typical brightness temperature offset

for the K-band channels ranged from22 to20.6K. This

range of brightness temperature offset values was similar

for the V-band channels (from 22 to 0.1K).

Because the brightness temperature offsets and their

uncertainties were generally stationary in time, they

were linearly interpolated to provide brightness tem-

perature bias corrections toHATPROobservations that

were not used in the actual bias-correction retrievals.

Sample MWRoe retrievals showed that this calibration

fix (Fig. 2; blue curves) improved the quality of the

FIG. 2. A sample comparison between the MWRoe retrievals performed without the bias correction (green curves) and with the bias

correction (blue curves) for theHATPROobservations at 1130UTC 18Nov 2007. The black curves show the thermodynamic profile from

a radiosonde launched around the same time as the HATPRO observations. Shown are the MWRoe (a) temperature retrievals and

(b) water vapor mixing ratio retrievals. Also shown are (c) the observed zenith brightness temperature valuesYminus the forward-model

calculation F(X) using the thermodynamic profile from the final iteration of the MWRoe retrieval. The error bars in (c) are the MWRoe

retrieval Se 1-sigma uncertainties.

TABLE 1. Retrieved median brightness temperature offsets DTb

and frequency offsets Df from the bias-correction retrieval. Re-

trieved DTb below are from a single period of time bounded by an

LN2 calibration. The dates of this period are from 2 Aug to 31 Dec

2007. Numbers in parentheses indicate the 1-sigma uncertainties

from the retrieval. Table cells with an emdash correspond to values

of less than 0.01GHz.

Frequency (GHz) Median DTb (K) Df (GHz)

22.24 22.0894 (0.01) — (—)

23.04 21.9020 (0.01) — (—)

23.84 21.6296 (0.01) — (—)

25.44 20.6965 (0.01) — (—)

26.24 20.7782 (0.01) — (—)

27.84 20.6753. (0.01) — (—)

31.40 20.7982 (0.01) — (—)

51.26 22.1686 (0.197) 20.044 (0.01)

52.28 21.8759 (0.197) 20.162 (—)

53.86 22.6201 (0.195) 20.055 (—)

54.94 20.2119 (0.094) 20.142 (0.01)

56.66 20.0308 (0.032) 0.050 (0.04)

57.30 20.0066 (0.022) 0.060 (0.04)

58.00 0.1169 (0.019) 0.030 (0.05)
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thermodynamic retrievals greatly relative to the initial

runs. The MWRoe retrieval is able to more accurately

retrieve the thermodynamic profile above 1 km with the

inclusion of this bias correction.

A benefit of using the optimal-estimation framework

for the bias correction is that the uncertainties from the

bias correction can be propagated through the MWRoe

retrieval. Most optimal-estimation thermodynamic re-

trievals only consider the instrument random 1-sigma

noise described in the SY matrix, but, by developing a

Jacobian Kb that describes the sensitivity of the forward

model to frequency and brightness temperature offsets,

the uncertainties of the bias correction B can be in-

cluded in the MWRoe retrieval by describing the total

uncertainties of the spectral observations Se through the

following equation:

S
e
5S

Y
1KT

bB
21K

b
. (3)

This method of error propagation was implemented in

MWRoe to provide a more accurate error analysis when

real data were used in the retrieval, but the impact of

using this more accurate error estimate for Se (Fig. 2c;

blue error bars) is small relative to a retrieval that uses

only uncertainties from the instrument noise (Fig. 2c;

green error bars).

5. MWRoe and AERIoe retrieval experiments

a. Retrieval configuration

A clear-sky-retrieval dataset and a cloudy-sky-

retrieval dataset were created for analyzing HATPRO

and AERI retrievals. To have common retrieval inputs

for both datasets and to exclude scattering effects from

clouds, theAERIoe algorithmused only the 538–588cm21

spectral region for water vapor profiling, as was used in

Turner and Löhnert (2014). Thus, the AERIoe run on

real data used the traditional 538–588, 612–618, 624–660,

674–713cm21 regions as well as several other window

channels in the retrieval. TheMWRoe algorithm utilized a

combination of zenith and off-zenith observations taken

by the HATPRO. Zenith observations from all 14 chan-

nels and off-zenith observations from the three strongest-

absorbing V-band channels (56.65, 57.3, and 58.0GHz)

at 108, 198, 308, and 458 above the horizon were used in

the retrieval. Using off-zenith observations from lower-

opacity channels would frequently have a negative impact

on the retrievals, because the forward model assumes

horizontally homogeneous conditions and actual contri-

butions to the downwelling radiance (e.g., clouds) in the

vertical column may not be the same along the off-zenith

ray path. The retrieval settings to create these datasets are

summarized in Table 2.

Each retrieval algorithm assumed a single 300-m-thick

cloud existed in the profile and used collocated ceilometer

data to place the cloud using the lowest cloud-base height

within a 20-min window. If no clouds were identified by

the ceilometer in this window, the window was expanded

to 3h. If clouds still were not found, a default cloud-base

height of 2km was set, and if no LWP was retrieved from

the instrument then the ‘‘cloud’’ optical depth was

effectively zero.

In our study, 773 radiosondes that were launched by

the AMF during the COPS experiment were used to

compute the prior Xa and its covariance Sa. The radio-

sonde profiles were first interpolated onto the 55-level

height grid that had its highest vertical resolution (10m)

at the surface, with the resolution decreasing exponen-

tially with height (1.5 km at 17km). Both the AERI and

MWR retrievals used the same height grid. In this study,

the first-guess profile used to begin each retrieval algo-

rithm was the mean prior Xa.

Both the MWRoe and AERIoe algorithms were run

on a subset of the total HATPRO and AERI data

(ARM Climate Research Facility 1994a) that were

collected at radiosonde (ARMClimate Research Facility

1994b) launch times. These launch times nominally

occurred at 0500, 1100, 1700, and 2300 UTC each day at

the AMF between September and December of 2007,

which created a total of 295 profiles available for

comparison.

b. Quality control and classification

Before analysis, the data from these retrievals were

quality controlled and classified. First, each retrieval

pair was removed if either the AERI’s hatch was closed

or if the HATPRO had dew or precipitation occurring

on the instrument’s radome. This filter left roughly one-

half (166) of the original number of retrievals available,

because 82 AERI observations had the hatch closed and

102 HATPRO observations were found to have rain or

dew on the radome as the heater of the dew blower

malfunctioned during the observation period. Second,

only retrieval pairs that converged were kept, which left

162 retrievals (AERIoe and MWRoe converged 99%

and 96% of the time, respectively).

After the retrievals were quality controlled, the remain-

ing retrievals were split up into a clear-sky dataset (s5 82)

and a cloudy dataset (c5 45) using AERI-retrieved LWP

thresholds. The AERI was primarily used to distinguish

between clear and cloudy scenes, because it is more sen-

sitive to low values of LWP than are microwave radi-

ometers (Turner 2007). The clear profiles were

identified by finding profiles for which AERIoe-

retrieved LWP was less than 6 gm22. Cloudy profiles

were found when the AERIoe-retrieved LWP was

NOVEMBER 2015 B LUMBERG ET AL . 2311

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 05:56 PM UTC



greater than 6gm22 (i.e., there was a liquid cloud present)

and the cloud base was between 0.5 and 3km above the

ground in order to analyze the accuracy of the below-

cloud-base profile. Although both the AERI and the

HATPRO were capable of retrieving in cloudy scenes,

cloud bases were limited to above 0.5km to help to com-

pare their respective performances over a deeper layer.

6. Results

a. Retrieval example

To check our retrieval algorithms against the ones

developed in L09, a single radiosonde was selected and

used with the forward models to generate simulated

clear-sky AERI and HATPRO spectra. These spectra

were used as input for the retrievals to simulate the re-

sults as if ideal instruments were used, that is, as if the

instruments were perfectly calibrated and the forward

model was assumed to be perfect and unbiased (no

offsets used). Because the L09 retrievals used both wa-

ter vapor bands and because it was a clear-sky scene, this

single run of AERIoe utilized both available water vapor

bands. Randomnoise generated from the values in Table 2

was included in the simulated observations.

Figures 3a and 3b show the retrieved temperature and

water vapor mixing ratio from the simulated spectra,

respectively. Both algorithms retrieve LWP values that

are indicative of clear sky. Like the L09 single-retrieval

results, the AERIoe retrieval matches the observed ra-

diosonde profile more closely than does the HATPRO’s

retrieval. The 1-sigma uncertainties derived from the

diagonal of the posterior covariance matrix S for these

retrieved profiles (Figs. 3c,d) also show that the AERI

retrieval has less uncertainty than the HATPRO retrieval

in both the temperature and water vapor mixing ratio re-

trievals. Also, the cumulative degrees of freedom of signal

(CDFS) profiles show that the AERI has 2 times as much

information in both the temperature profile (Fig. 3e) and

water vapor profile (Fig. 3f) as the HATPRO. The total

degrees of freedom of signal (DFS) for both the temper-

ature and water vapor mixing ratio retrievals from both

instruments falls within the ranges indicated by L09.

Next, the retrieval algorithms were applied to real

AERI and HATPRO observations taken at the same

time that the radiosonde used to generate the simulated

data was released (Fig. 4). The retrieved profiles using

real observations (not using the 1250–1350 cm21 band in

AERIoe and using calibration offsets in MWRoe) are

shown in Figs. 4a and 4b. The retrieved profiles that

use real AERI andHATPRO observations are different

from those that used simulated observations (Figs. 3a,b),

but the AERIoe-retrieved temperature profile still

outperforms the MWRoe (Fig. 4a). The AERIoe-

retrieved water vapor mixing ratio profile has a slight

decrease in accuracy relative to the simulated observa-

tions, but the radiosonde profile is still within the 1-sigma

error bars of the retrieval. In addition, the AERIoe

retrievals that used real observations had significantly

larger 1-sigma uncertainties (Figs. 4c,d) and lower

CDFS profiles (Figs. 4e,f) than did the retrieval that

used the simulated observations. These results are to be

expected since the retrievals that used real observa-

tions used fewer spectral observations. The 1-sigma

uncertainty profiles and the CDFS profiles from

MWRoe were very similar to the retrievals that used

the simulated observations, and the retrieved LWP

TABLE 2. The input spectral regions, along with forward-model type and the retrieved state vector used in each retrieval algorithm to

generate the instrument-comparison datasets. Here, T(z) corresponds to a temperature profile, Q(z) is the water vapor mixing ratio

profile, LWP is liquid water path, andReff is effective radius. The numbers in parentheses next to each spectral region respectively indicate

the number of channels within that band and the typical average 1-sigma noise level for that band that is used to develop the SY matrix.

TheMWRoe off-zenith frequencies that were designated used the same noise levels as those in the zenith scans. Channels with an asterisk

were not used in AERIoe runs that use real data.

AERIoe MWRoe

Observations (Y, SY) Zenith wavenumbers:

538–588 cm21 (104, 1.07 RU),

1250–1350 cm21 (207, 0.14 RU),*

612–618 cm21 (12, 0.35 RU),

624–660 cm21 (74, 0.26 RU),

674–713 cm21 (81, 0.16 RU),

860.1–864 cm21 (8, 0.13 RU),

872.2–877 cm21 (11, 0.13 RU), and

898.2–905.4 cm21 (15, 0.12 RU)

Zenith frequencies:

22.24–31.40GHz (7, 0.4 K),

51.25–54.93GHz (4, 0.5 K),

56.65GHz (0.3 K),

57.30GHz (0.25K), and

58.00GHz (0.2 K)

Off zenith: Not applicable Off-zenith frequencies: 56.65, 57.29,

and 58.00GHz

Elev angles: 458, 308, 19.28, and 108
Forward model [F(X), Kn] LBLRTM, version 12.2 MonoRTM, version 4.2

Retrieved variables (X) T(z), Q(z), LWP, and Reff T(z), Q(z), and LWP
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values in Fig. 4 indicate that both instruments are ob-

serving clear sky.

b. Bias and RMS-difference profiles in clear and
cloudy scenes

A common way to compare the accuracy of retrieved

thermodynamic profiles is to compute bias and bias-free

root-mean-square (RMS)-difference profiles using col-

located radiosonde data as the truth profile. Figure 5

shows these profiles for cases in which the sky above the

AERI and HATPRO was considered to be cloud free.

The absolute value of the AERIoe temperature bias

(Fig. 5a; red solid curve) is less than 0.5K below 2km and

then slowly increases to 0.7K by 2.5km, after which it

stays constant with height until 5 km. The AERIoe RMS

difference (red dashed curve) is 0.3K at the surface, in-

creases to 1.2K by 500m, and is effectively constant with

height above that level, with a slight increase to 1.5K at

4km. The MWRoe retrieval temperature bias (Fig. 5a;

solid blue curve) was below 0.5K up to 1km and in-

creased to 0.7K at 3km, and the temperature RMS dif-

ference (dashed blue curve) changed similarly to that of

AERIoe but overall was more than that of AERIoe.

Overall, both the bias and the RMS difference for the

AERIoe temperature results were smaller than those

from the MWRoe algorithm. These results (Fig. 5a)

support the conclusion of L09 that the AERI is superior

to the microwave radiometer for clear-sky temperature

profiling.

The water vapor results between the two retrievals

were very similar, with major differences only in the

lowest 1.5 km. The absolute value of the AERIoe-

retrieved water vapor profile bias (Fig. 5b) is less than

0.5 g kg21 below 6km, and the RMS difference is

0.6 g kg21 at the surface, increases to 1.2 g kg21 at 1.3 km,

and then decreases to 0.5 g kg21 at 4 km. Although the

MWRoe retrievals have slightly larger biases than do

those of AERIoe below 3km, above 3 km the bias is

near zero. TheMWRoeRMS difference below 1kmwas

also slightly larger (1 g kg21) relative to that of AERIoe.

This larger bias may be due to errors in the two-channel

ARM MWR for which we are unable to account in the

bias correction step but is mostly within the error bars of

the retrieval shown in Fig. 4d. Between 3 and 5km,

however, the HATPRO has a slightly smaller RMS dif-

ference than does theAERI. Except for the differences in

FIG. 3. Retrieved (a) temperature and (b) water vapor mixing ratio (WVMR) from the simulated HATPRO (blue curves) and AERI

(red curves) observations, where the simulated observations were computed from a radiosonde launched at the AMF site at 1130 UTC 18

Nov 2007 (green curves). Also shown are (c),(d) the 1-sigma uncertainty profiles of the retrievals and (e),(f) the CDFS profiles for

temperature and water vapor, respectively. The vertical dashed lines in (e) and (f) denote the total DFS for temperature and water vapor,

respectively. In this example, the AERIoe retrieval used both the 538–588 and 1250–1350 cm21 bands for profiling water vapor.
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RMSdifference in the lowest 1km, there is no evidence in

Fig. 5b that either the AERI system or the HATPRO

system offers significantly more accurate profiles than

does the other.

Because atmospheric scientists would be using these

instruments in all environments, it is equally important

to assess their performance in cloudy scenes. Given that

clouds are semitransparent in the microwave region of

the electromagnetic spectrum and are effectively opaque

in the infrared, the HATPRO has one advantage over

the AERI: the HATPRO is sensitive to changes in

temperature and humidity above cloud base (Löhnert
et al. 2007). Because of this limitation for the AERI, this

paper will investigate the performance of both instruments

below cloud base; only bias and RMS-difference profiles

up to cloud base were computed for the AERIoe and

MWRoe retrievals, again using the radiosondes as truth.

These profiles are shown in Figs. 6a and 6b (red curves for

AERIoe, and blue curves forMWRoe). Figure 6 limits the

profiles up to only 1km, because above 1km the number

of available samples drops off significantly (Fig. 6c).

The temperature results (Fig. 6a) show that the

AERIoe and MWRoe biases below cloud base are less

than 0.5K up to 1km. The temperature RMS difference

profiles show that AERIoe’s profile accuracy is better

than that of MWRoe. This result suggests that, although

both instruments are viewing a sky that contains a cloud,

the AERI temperature profile below the cloud base

leads in accuracy, similar to the clear-sky results shown

in Fig. 5a. The water vapor results (Fig. 6b) are similar to

the clear-sky statistics in that AERIoe and MWRoe

profiles below cloud base have biases of less than

1 gkg21, and the AERIoe RMS-difference profile is less

than that ofMWRoe below the cloud base. These results

support the idea that, at least up to 1km, the AERI is as

accurate below the cloud base as it is when there are no

clouds overhead.

c. Taylor plots

While not featured in L09, an additional set of plots

can be used to evaluate how well each retrieved profile

can capture the vertical shapes of its truth profile instead

of the average accuracy of the whole dataset at each

height (Figs. 5 and 6). These Taylor diagrams (Taylor

2001), which were used in Turner and Löhnert (2014)
to evaluate the AERIoe algorithm, show Pearson’s

correlation coefficient between the truth and retrieved

profiles on the y axis and the ratio of the standard deviation

FIG. 4. As in Fig. 3, except that the retrieved profiles came from real HATPRO and AERI observations taken at approximately

1130 UTC 18 Nov 2007. Unlike the simulated data, the AERIoe retrieval only included data from a single water vapor band (i.e., the

1250–1350 cm21 band was not included).
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of the retrieval to the standard deviation of the truth profile

on the x axis. Because these remote sensors have the ma-

jority of their sensitivity in the lowest 4km, the calculations

of correlation coefficient and standard deviation only use

data between 0 and 4km. Retrievals that have a correla-

tion coefficient of 1 and a standard deviation ratio (SDR)

of 1 are considered to capture all structure in the truth

profile perfectly (green dot in Fig. 7).

Figures 7a and 7b shows these plots for the clear-sky

MWRoe and AERIoe retrievals. For the temperature

retrievals, both the HATPRO and the AERI perform

well, with correlation coefficients above 0.85; the AERI

retrievals have a slightly better ability to resolve structure

in the profile as demonstrated by the higher correlation

coefficients and SDRvalues that are closer to 1 relative to

the MWRoe retrievals. Figure 7b shows that retrieving

water vapor structure is much more difficult with both

remote sensors; the spread in the correlation coefficient is

much larger for water vapor than for temperature, and

the SDR range is also larger. As was suggested by the

clear-sky bias and RMS-difference results below 1km in

Fig. 5, Fig. 7b suggests that the AERI may be slightly

better at capturing the structure of thewater vapor profile

than the HATPRO as the AERI’s SDR bounds are

slightly closer to 1 than the HATPRO.

d. Degrees of freedom for signal

The CDFS profile metric helps to explain the results

of the Taylor plots by showing how the information in

the instrument observations is vertically distributed.

Figure 8 shows the distribution of CDFS profiles from

the clear-sky retrievals; the solid lines denote the me-

dian CDFS profiles for the 82 cases. When profiling

temperature (Fig. 8a), the maximum DFS is 3 for the

FIG. 6. Bias (solid curves) and RMS-difference (dashed curves) profiles for cloudy-sky comparisons of the AERIoe (red curves) and

MWRoe (blue curves) retrievals with radiosondes up to cloud base for all retrievals that had a cloud base between 0.5 and 3 km (c5 45).

Profiles are truncated at 1 km because of sampling issues within this portion of the dataset. Shown are the statistics for the retrieved

(a) temperature and (b) water vapor mixing ratio profiles. Also shown is (c) the number of points below cloud base that were used in the

computation of the statistics shown in (a) and (b).

FIG. 5. Bias (solid curves) and RMS-difference (dashed curves) profiles for clear-sky comparisons of the AERIoe

(red curves) andMWRoe (blue curves) retrievals with radiosondes (s5 82); shown are the statistics for the retrieved

(a) temperature and (b) water vapor mixing ratio profiles.
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HATPRO and 5.5 for the AERI below 6km. For both

instruments, most of this information (approximately

80% of the total information content) is below 1km.

The situation is similar for water vapor (Fig. 8b), but

there is less of a gap in median CDFS and there is sig-

nificantly more variability in the CDFS profiles for water

vapor (seen by the spread around the median profile)

than for temperature. The shape of the CDFS profiles

demonstrates that the AERI has much more of its in-

formation in the lowest 1km (nearly 2/3) and is approaching

its maximum value by 4km, whereas the HATPRO’s in-

formation content is more evenly distributed with height in

the lowest 6km. TheAERI’s higher information content in

the lowest 1km helps to explain why the AERIoe RMS-

difference profiles, in both clear (Fig. 5b) and cloudy

conditions (Fig. 6b), are better than the HATPRO re-

trievals in the lowest 1km. These overall total DFS values

for water vapor are lower than those found in the L09

study, however, because 1) the true observation error in the

AERI was greater than that used in the theoretical study

and 2) only one of the two water vapor bands was used in

the retrievals that used real data.

e. Vertical resolution

An additional metric that explains the information

within the spectral observations is the vertical resolution

of the retrieval (Hewison 2007). Between the two in-

struments, the AERI is generally able to resolve tem-

perature structures better because it has a better median

vertical resolution at all heights (0–4km) than does the

FIG. 7. Modified Taylor plots for the retrieved clear-sky (a) temperature and (b) water vapormixing ratio using the

AERIoe (red symbols) and MWRoe (blue symbols) datasets (s 5 82). Each symbol indicates the score for an in-

dividual profile, and the green dot centered at (1, 1) indicates a perfect score. The arms of the plotted crosses span the

10th–90th percentiles for the correlation coefficient (vertical arms) and the standard deviation ratio (horizontal

arms). The intersection of the arms represents the location of the median correlation coefficient and standard de-

viation ratio of the given dataset.

FIG. 8. CDFS for (a) temperature and (b) water vapor mixing ratio for the clear-sky AERIoe (red) and MWRoe

(blue) retrievals that used frequency offsets (s 5 82). The solid curves indicate the median DFS profile, and the

shaded areas indicate the 10th–90th percentile of DFS values.
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HATPRO (Fig. 9a). This reason is why the AERI tem-

perature retrieval in Fig. 4a is able to resolve the 1-km-

deep elevated inversion seen in the radiosonde profile

better than the HATPRO. At the inversion height

(1.5 km), the AERI temperature vertical resolution is

typically 2 km versus the HATPRO’s 3km.

For the water vapor mixing ratio (Fig. 9b), the differ-

ence in vertical resolution between the AERI and

HATPRO is smaller (less than 1km from 0.5 to 2km

AGL), and from 3 to 5km theHATPRObegins to have a

better vertical resolution than the AERI as a result of its

information in the middle troposphere from the low-

opacity K-band channels (Fig. 1d). Because the AERI

water vapor weighting functions (Fig. 1b) have shallower

slopes, larger magnitudes, and a higher density in the

boundary layer relative to the HATPRO K-band chan-

nels, the AERI can resolve features better in the lower

portion of the atmosphere than can the HATPRO. As

was discussed before, this advantage is small because the

AERIoe retrievals in this paper are only using one water

vapor band as opposed to two. Although this advantage is

there, the HATPRO vertical-resolution values have less

spread than those of the AERI, because the opacity of

microwave wavelengths is less sensitive to variations in

thermodynamic structure than is that of infrared wave-

lengths. Overall, a conclusion from Fig. 9 and Fig. 1 is

that, although the AERI spectra are unable to ‘‘see’’ as

deep into the atmosphere as the HATPRO, the AERI

has a much sharper vision of boundary layer features in

the lowest 3km than does the HATPRO.

7. Conclusions

In this study, optimal-estimation-based thermodynamic

retrievals were performed on a collocated ground-based

AERI (an infrared spectrometer) and HATPRO (multi-

channelmicrowave radiometer) using data froma4-month

period from September to December of 2007 in the Black

Forest in southwestern Germany. This study highlighted

the challenge of using optimal-estimation retrievals on real

AERI and HATPRO data. Within this study, we show for

the first time a side-by-side comparison of retrievals from

real AERI and MWR observations in which both re-

trievals use the same optimal-estimation framework.

This study confirmed the results of L09 in that the

AERI clear-sky temperature retrievals are superior to

those of the HATPRO, which is due to the fact that the

AERI hasmore independent pieces of information about

the temperature profile. This paper extends this result to

the below-cloud-base profile. Our water vapor results

were different than those from L09, however; in partic-

ular, the total DFS values from the AERI were smaller

when real observations were used. This result was be-

cause the AERI retrievals did not use the second water

vapor band (1250–1350 cm21) in the retrieval to eliminate

systematic errors that arise when that band is included

and that are induced by neglecting the contributions of

radiative scattering in cloudy situations. Nonetheless,

the AERI-retrieved water vapor profiles were still

more accurate than the HATPRO-retrieved profiles in

the lowest 1 km for the clear-sky cases. In the cloudy-

sky cases, the AERI displayed a greater accuracy than

did the HATPRO; our study only considered the pro-

file below the cloud base, however. These accuracy

results from our AERIoe retrievals overall were simi-

lar to those shown in Turner and Löhnert (2014). In
addition, this study also discovered that the AERI is

able to capture temperature structures, such as in-

versions, better than the HATPRO because of its

higher vertical resolution.

FIG. 9. Vertical resolution for the (a) temperature and (b) water vapor mixing ratio profiles for the clear-sky

AERIoe (red) and MWRoe (blue) retrievals (s 5 82). The thick solid lines indicate the median vertical resolution

profile, and the shaded areas indicate the 10th–90th percentile of the values of vertical resolution.

NOVEMBER 2015 B LUMBERG ET AL . 2317

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 05:56 PM UTC



Although these results show that the AERI is superior

in information content and accuracy, it does notmean that

the MWR has no value in a national network of thermo-

dynamic sounders: the MWR can provide valuable in-

formation about the profile above the cloud base that the

AERI cannot (Löhnert et al. 2007). Therefore, we antic-

ipate that multi-instrument retrievals will be needed to

blend the individual advantages of different upper-air re-

mote sensing instruments (i.e., MWRs in the midtropo-

sphere and above-cloud profile, AERIs in clear-sky and

below cloud, and satellites for the mid- to upper tropo-

sphere) to improve the overall estimation of the thermo-

dynamic profile of the entire troposphere (Ho et al. 2002;

Ebell et al. 2013). Because of this need, future retrieval

algorithms will merge these different datasets together.

Two significant challenges existed in this study. The

first was the ability to obtain the AERI’s full profiling

capabilities since our retrievals did not include the sec-

ond water vapor band. This fact highlights the need to

expand the AERI channels used to maximize retrieval

information content. Therefore, future work will in-

vestigate the use of a more optimal selection of spectral

channels to use in the AERIoe retrieval (i.e., as in

Merrelli and Turner 2012) to maximize the accuracy and

information content in the retrieved profiles, instead of

using traditional absorption bands (e.g., 538–588 cm21).

The second challenge was the radiometric and spectral

calibration of each instrument. The AERI has a radio-

metric calibration of better than 1% of the ambient ra-

diance, and its spectral calibration is easily determined

(Knuteson et al. 2004b). The HATPRO, on the other

hand, required an additional step to correct for both the

instrument calibration and instrument characteristics

that the AERI did not require. Although we were able

to characterize theHATPRO instrument biases because

the radiometer was collocated with a radiosonde system,

this may not be the case for other deployments.
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